

WAR

AMERICAS

THIS HEAT EXCHANGER WAS BUILT IN

TEMA STANDARDS

BY A TUBULAR EXCHANGER

MANUFACTURES ASSOCIATION, INC. MEMBER COMPANY www.tema.org

Overview of the TEMA Standard

Heat Exchanger World Pasadena, TX November 2022

Θ

TEMA: The Tubular Exchanger Manufacturer's Association

- TEMA is a trade association of the world's leading manufacturers of shell and tube heat exchangers, who have pioneered the research and development of heat exchangers for over 80 years.
- TEMA publishes a Standard for thermal and mechanical design of high-quality heat exchangers.

The TEMA Standard

- Current: 10th Edition, published in 2019.
- The Standard contains 10 sections:
 - 1. N Nomenclature
 - 2. F Fabrication Tolerances
 - 3. G General Fabrication and Performance Information
 - 4. E Installation, Operation, and Maintenance
 - 5. RCB Mechanical Standards Class RCB Heat Exchangers
 - 6. V Flow Induced Vibration
 - 7. T Thermal Relations
 - 8. P Physical Properties of Fluids
 - 9. D General Information

10. RGP – Recommended Good Practice

E M standards

71177

Sponsored by:

Brask, Inc

Section 1: N - Nomenclature

Describes naming and type standards for exchangers, as well as all components of exchangers

HEAT EXCHANGER

CUST-O-FAB

COL TECHNOLOGIES

2022

WAR

FIGURE N-1.2

Examples of TEMA Type Exchangers

Section 2: F – Fabrication Tolerances

AMERICAS

FIGURE F-3

STANDARD UNCONFINED PLAIN FACE JOINT CONSTRUCTION

0

õ

AMERICAS

Section 3: G - General Fabrication and Performance Information

Provides definitions, specification sheet, documentation standards, and standard performance guarantees.

	F	FIGURE G	-5.2 HEAT	EXCHAN	GER SPEC	IFICATION	SHEET		
1						Job No.			
2	Customer					Reference N	0.		
3	Address					Proposal No.		_	
4	Plant Location					Date		Rev.	
5	Service of Unit					Item No.			
6	Size 1	Гуре	(Hor/Vert)			Connected in	1	Parallel	Series
7	Surf/Unit (Gross/Eff.)		sq ft; Shells/l	Jnit		Surf/Shell (G	ross/Eff.)		sq ft
8			PERF	ORMANC	E OF ONE	UNIT			
9	Fluid Allocation				Shell Side			Tube Side	Э
10	Fluid Name								
11	Fluid Quantity Total		lb/hr						
12	Vapor (In Out)								
13	Liquid								
14	Steam								
15	Water								
16	Noncondensable								
17	Temperature		۴						
18	Specific Gravity								
19	Viscosity, Liquid		cP						
20	Molecular Weight, Vapor								
21	Molecular Weight, Noncond	ensable							
22	Specific Heat		BTU / Ib %						
23	Thermal Conductivity	BTU	ft / hr sq ft °F						
24	Latent Heat	E	STU/lb@ºF						
25	Inlet Pressure		psia						
26	Velocity		ft / sec						
27	Pressure Drop, Allow. /Calc.		psi		/			/	
28	Fouling Resistance (Min.)	hr so	iπ %⊧/BiΩ	D.T.L					0
29	Heat Exchanged			BIU	nr MTD (Cor	rected)			TLL / br og ft 0E
	I PERFORMENT AND INCOMENTATION INCOMENTATION								
31	Transier Rate, Service	CONSTRU			Clean		Sketch /Bu	ndle/Nozzl	Orientation)
31	Transier Rate, Service	CONSTRU	CTION OF O	NE SHELL	Clean Tube	Side	Sketch (Bu	ndle/Nozzl	e Orientation)
31 32 33	Design / Test Pressure	CONSTRU	CTION OF O Shell	NE SHELL Side	Clean Tube	e Side	Sketch (Bu	ndle/Nozzl	e Orientation)
31 32 33 34	Design / Test Pressure	CONSTRU psig	CTION OF O Shell	NE SHELL Side	Tube	e Side /	Sketch (Bu	ndle/Nozzl	e Orientation)
31 32 33 34 35	Design / Test Pressure Design Temp. Max/Min No. Passes per Shell	CONSTRU psig °F	CTION OF O Shell	NE SHELL Side /	Tube	e Side / /	Sketch (Bu	ndle/Nozzle	e Orientation)
31 32 33 34 35 36	Design / Test Pressure Design Temp. Max/Min No. Passes per Shell Corrosion Allowance	CONSTRU psig °F	CTION OF O Shell	NE SHELL Side /	Tube	e Side / /	Sketch (Bu	E Indle/Nozzle	e Orientation)
31 32 33 34 35 36 37	Design / Test Pressure Design Temp. Max/Min No. Passes per Shell Corrosion Allowance Connections In	CONSTRU psig °F	CTION OF O Shell	NE SHELL Side /	Tube	e Side / /	Sketch (Bu	E Indle/Nozzle	e Orientation)
31 32 33 34 35 36 37 38	Design / Test Pressure Design Temp. Max/Min No. Passes per Shell Corrosion Allowance Connections In Size & Out	CONSTRU psig °F in	CTION OF O Shell	NE SHELL Side /	Tube	e Side / /	Sketch (Bu	E Indle/Nozzle	e Orientation)
31 32 33 34 35 36 37 38 39	Design / Test Pressure Design Temp. Max/Min No. Passes per Shell Corrosion Allowance Connections In Size & Out Rating Intermediate	CONSTRU psig °F in	CTION OF O Shell	NE SHELL Side /	Tube	e Side / /	Sketch (Bu	E Indle/Nozzle	e Orientation)
31 32 33 34 35 36 37 38 39 40	Design / Test Pressure Design Temp. Max/Min No. Passes per Shell Corrosion Allowance Connections In Size & Out Rating Intermediate Tube No. OD in	CONSTRU psig °F in n;Thk (Min/A	CTION OF O Shell	NE SHELL Side / /	Clean Tube	e Side / / ft;Pitch	Sketch (Bu	ndle/Nozzle	⊕ 90 ↔ 45
31 32 33 34 35 36 37 38 39 40 41	Design / Test Pressure Design Temp. Max/Min No. Passes per Shell Corrosion Allowance Connections In Size & Rating Intermediate Tube No. OD ii Tube No. OD ii	CONSTRU psig °F in n;Thk (Min/A	CTION OF O Shell	NE SHELL Side / /	Clean Tube Material	9 Side / / ft;Pitch	Sketch (Bu	e Indle/Nozzle	⊕ 90 ↔ 45
30 31 32 33 34 35 36 37 38 39 40 41 42	Design / Test Pressure Design Temp. Max/Min No. Passes per Shell Corrosion Allowance Connections In Size & Out Rating Intermediate Tube No. OD in Tube Type Shell	CONSTRU psig °F in n;Thk (Min/A	CTION OF O Shell	NE SHELL Side / / in;Length in	Clean Tube Material Shell Cover	9 Side / / ft;Pitch	Sketch (Bu	=====================================	⊕ 90 ↔ 45 (Remov.)
30 31 32 33 34 35 36 37 38 39 40 41 42 43	Design / Test Pressure Design / Test Pressure Design Temp. Max/Min No. Passes per Shell Corrosion Allowance Connections In Size & Out Rating Intermediate Tube No. OD in Tube Type Shell Channel or Bonnet	CONSTRU psig °F in n;Thk (Min/A ID	CTION OF O Shell	NE SHELL Side / / / in:Length in	Clean Tube Material Shell Cover Channel Cov	e Side / / ft;Pitch	Sketch (Bu	- - - - - - - - - - - - - - - - - - -	⊕ 90 ↔ 45 (Remov.)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	Design / Test Pressure Design Temp. Max/Min No. Passes per Shell Corrosion Allowance Connections In Size & Out Rating Intermediate Tube No. OD in Tube Type Shell Channel or Bonnet Tubesheet-Stationary	CONSTRU psig °F in n;Thk (Min/A	CTION OF O Shell	NE SHELL Side / / / in;Length in	Clean Tube Material Shell Cover Channel Cov Tubesheet-F	e Side / / ft;Pitch rer ioating	Sketch (Bu	= Indie/Nozzi 4·30 ☆60 (Integ.)	⊕ 90 ↔ 45 (Remov.)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	Design / Test Pressure Design Temp. Max/Min No. Passes per Shell Corrosion Allowance Connections In Size & Out Rating Intermediate Tube No. OD in Tube Type Shell Channel or Bonnet Tubesheet-Stationary Floating Head Cover	CONSTRU psig °F in n;Thk (Min/A ID	Vg)	NE SHELL Side / / / in;Length in	Aterial Material Shell Cover Channel Cov Tubesheet-F Impingemen	e Side / / ft;Pitch ver loating t Protection	Sketch (Bu	e tindle/Nozzl ⊲-30 ☆60 (Integ.)	E 90 ↔ 45 (Remov.)
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	Taister Rate, Service Design / Test Pressure Design Temp. Max/Min No. Passes per Shell Cornoctions In Size & Out Rating Intermediate Tube No. OD in Tube Type Shell Channel or Bonnet Tubesheet-Stationary Floating Head Cover Baffles-Cross	CONSTRU psig °F in n;Thk (Min/A ID	CTION OF O Shell vg) OD	NE SHELL Side / / / in;Length in	Atterial Material Shell Cover Channel Cov Tubesheet-F Impingemet-F	e Side / / ft;Pitch // rer loating t Protection /Area)	Sketch (Bu	e transformed and the second	⊕ 90 ↔ 45 (Remov.)
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	Taister Rate, service Design / Test Pressure Design Temp. Max/Min No. Passes per Shell Corrosion Allowance Connections In Size & Out Rating Intermediate Tube No. OD in Tube Type Shell Channel or Bonnet Tubesheet-Stationary Floating Head Cover Baffles-Long	CONSTRU psig °F in n;Thk (Min/A ID Ty	CTION OF O Shell y y y y y y o D	NE SHELL Side / / / in;Length in	Material Material Shell Cover Channel Cov Tubesheet-F Impingemen %Cut (Diam/ Seal Type	e Side / / ft;Pitch ft;Pitch ver loating t Protection /Area)	Sketch (Bu in Spacing: c/c	d-30 ☆60 (Integ.)	⊕ 90 ↔ 45 (Remov.)
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	Design / Test Pressure Design / Test Pressure Design Temp. Max/Min No. Passes per Shell Corrosion Allowance Connections In Size & Out Rating Intermediate Tube No. OD in Tube Type Shell Channel or Bonnet Tubesheet-Stationary Floating Head Cover Baffles-Cross Baffles-Cross Baffles-Long Supports-Tube	CONSTRU psig oF in n;Thk (Min/A ID Ty	Vg) OD U-Bend	NE SHELL Side / / / in;Length in	Material Shell Cover Channel Cov Tubesheet-F Impingemen %Cut (Diam/ Seal Type	e Side / / ft;Pitch ft;Pitch ver loating t Protection /Area)	Sketch (Bu in Spacing: c/c Type	endle/Nozzl ⊲-30 ☆60 (Integ.) Inlet	⊕ 90 ↔ 45 (Remov.)
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	Taister Rate, Service Design / Test Pressure Design Temp. Max/Min No. Passes per Shell Corrosion Allowance Connections In Size & Out Rating Intermediate Tube No. OD II Tubes Type Shell Channel or Bonnet Tubesheet-Stationary Floating Head Cover Baffles-Cross Baffles-Long Supports-Tube Bypass Seal Arrangement	CONSTRU psig °F in in Thk (Min/A iD Ty	CTION OF O Shell yg) OD pe U-Bend	NE SHELL Side / / / in;Length in	Material Shell Cover Channel Cov Tubesheet-F Impingemen %Cut (Diam. Seal Type Tube-to-Tub	e Side / / ft;Pitch rer loating t Protection (Area)	Sketch (Bu in Spacing: c/c Type	endie/Nozzi ⊲-30 ☆60 (Integ.)	E Orientation) E 90 ↔ 45 (Remov.) in
31 32 33 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50	Taister Rate, Service Design / Test Pressure Design / Test Pressure Design / Test Pressure Connections In Size & Out Rating Intermediate Tube No. OD in Tube Type Shell Channel or Bonnet Tubesheet-Stationary Floating Head Cover Baffles-Long Supports-Tube Bypass Seal Arrangement Expansion Joint	CONSTRU psig °F in n;Thk (Min/A ID Ty	CTION OF O Shell y y y y y y OD oD u-Bend	NE SHELL Side / / / in:Length in	Aterial Material Shell Cover Channel Cov Tubesheet-F Impingemen %Cut (Diam, Seal Type Tube-to-Tub Type	e Side / / ft;Pitch // loating t Protection /Area) esheet Joint	Sketch (Bu in Spacing: c/c Type	endle/Nozzli ⊲-30 ☆60 (Integ.) Iniet	⊕ 90 ↔ 45 (Remov.) in
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	Taister Rate, service Design / Test Pressure Design Temp. Max/Min No. Passes per Shell Corrosion Allowance Connections In Size & Out Rating Intermediate Tube No. OD in Tube Type Shell Channel or Bonnet Tubesheet-Stationary Floating Head Cover Baffles-Long Supports-Tube Bypass Seal Arrangement Expansion Joint vf-Inlet Nozzle	CONSTRU psig oF in n;Thk (Min/A ID Ty	CTION OF O Shell vg) OD pe U-Bend Bundle 8	NE SHELL Side 7 7 in;Length in in	Material Material Shell Cover Channel Cov Tubesheet-F Impingemen %Cut (Diam/ Seal Type Tube-to-Tub Type	e Side / / ft;Pitch ft;Pitch loating t Protection /Area) esheet Joint	Sketch (Bu in Spacing: c/c Type Bundle Exit	⊲-30 ☆60 (Integ.)	⊕ 90 ↔ 45 (Remov.)
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	Design / Test Pressure Design / Test Pressure Design Temp. Max/Min No. Passes per Shell Corrosion Allowance Connections In Size & Out Rating Intermediate Tube No. OD in Tube Type Shell Channel or Bonnet Tubesheet-Stationary Floating Head Cover Baffles-Cross Baffles-Cross Baffles-Cross Baffles-Cong Supports-Tube Bypass Seal Arrangement Expansion Joint V-Inlet Nozzle Gaskets-Shell Side	CONSTRU psig oF in n;Thk (Min/A ID Ty	vg) OD U-Bend Bundle B	NE SHELL Side / / in;Length in Entrance	Material Shell Cover Channel Cov Tubesheet-F Impingemen %Cut (Diam/ Seal Type Tube-to-Tub Type Tube Side	e Side / / ft;Pitch ft;Pitch loating t Protection /Area) esheet Joint	Sketch (Bu in Spacing: c/c Type Bundle Exit	endle/Nozzl ⊲-30 ☆60 (Integ.) Inlet	E 90 ↔ 45 (Remov.)
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52 51	Design / Test Pressure Design / Test Pressure Design Temp. Max/Min No. Passes per Shell Corrosion Allowance Connections In Size & Out Rating Intermediate Tube No. OD in Tube Type Shell Channel or Bonnet Tubesheet-Stationary Floating Head Cover Baffles-Cross Bupports-Tube Bypass Seal Arrangement Expansion Joint vsf-Inlet Nozzle Gaskets-Shell Side Floating Head	CONSTRU psig of in in n;Thk (Min/A ID Ty	CTION OF O Shell y yg) OD U-Bend Bundle B	NE SHELL Side / / in;Length in Entrance	Atterial Material Shell Cover Channel Cov Tubesheet-F Impingemen %Cut (Diam/ Seal Type Tube-to-Tub Type Tube Side	e Side / / ft;Pitch ft;Pitch ver loating t Protection /Area) esheet Joint	Sketch (Bu in Spacing: c/c Type Bundle Exit	⊲-30 ☆60 (Integ.)	⊕ 90 ↔ 45 (Remov.)
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 49 50 51 52 53 45	Trainster Rate, Service Design / Test Pressure Design / Test Pressure Design / Test Pressure Cornections In Size & Out Rating Intermediate Tube No. OD in Tube Type Shell Channel or Bonnet Tubesheet-Stationary Floating Head Cover Baffles-Cross Baffles-Cro	CONSTRU psig °F in n;Thk (Min/A ID Ty	CTION OF O Shell vg) OD U-Bend Bundle B	NE SHELL Side 7 7 in;Length in in Entrance	Material Shell Cover Channel Cover Channel Cov Tubesheet-F Impingeme %Cut (Diam/ Seal Type Tube-to-Tub Type	e Side / / ft;Pitch / rer loating t Protection /Area) esheet Joint	Sketch (Bu in Spacing: c/c Type Bundle Exit	-d-30 ☆60 (Integ.)	-⊡ 90 - +45 (Remov.) in
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52 53 55 55 55 55	Trainster Rate, Service Design / Test Pressure Design / Test Pressure Design / Test Pressure Design / Test Pressure Connections In Size & Out Rating Intermediate Tube No. OD in Tube Type Shell Channel or Bonnet Tubesheet-Stationary Floating Head Cover Baffles-Long Supports-Tube Bypass Seal Arrangement Expansion Joint V ⁻ Inlet Nozzle Gaskets-Shell Side Floating Head Code Requirements Weight / Shell Destaret	CONSTRU psig °F in n;Thk (Min/A ID Ty	CTION OF O Shell y y y y y y y y y y y y y y y y y y	NE SHELL Side 7 7 in;Length in in Entrance	Material Material Shell Cover Channel Cov Tubesheet-F Impingemen %Cut (Diam) Seal Type Tube-to-Tub Type Tube Side	e Side / / ft;Pitch / rer loating t Protection /Area) esheet Joint Esheet Joint Bu	Sketch (Bu in Spacing: c/c Type Bundle Exit Class ndle	⊴-30 ☆60 (Integ.)	E 90 ÷ 45 (Remov.)
31 32 33 34 35 36 37 38 30 41 42 43 45 46 47 49 51 52 54 55 55 55 55 56 75 56 75 56 75 75 75 75 75 75 75 75	Taister Rate, Service Design / Test Pressure Design Temp. Max/Min No. Passes per Shell Corrosion Allowance Connections In Size & Out Rating Intermediate Tube No. OD in Tube Type Shell Channel or Bonnet Tubesheet-Stationary Floating Head Cover Baffles-Long Supports-Tube Bypass Seal Arrangement Expansion Joint Vf-Inlet Nozzle Gaskets-Shell Side Floating Head Code Requirements Weight / Shell Remarks	CONSTRU psig oF in n;Thk (Min/A ID Ty	CTION OF O Shell y y y y y y y o D o D v y y y o D v g) O D v g) v g) o D v g i i i i i i i i i i i i i i i i i i	NE SHELL Side / / in;Length in Entrance	Material Shell Cover Channel Cov Tubesheet-F Impingemen %Cut (Diam/ Seal Type Tube-to-Tub Type Tube Side	e Side / / ft;Pitch / loating t Protection /Area) esheet Joint Bu Bu	Sketch (Bu in Spacing: c/c Type Bundle Exit Class ndle	Indle/Nozzli ⊲-30 △ 60 (Integ.) Inlet	E 90 \$45 (Remov.)
31 32 33 34 35 36 37 38 40 412 434 456 47 48 495 515 525 556 557 556 576	Trainster Nate, Service Design / Test Pressure Design Temp. Max/Min No. Passes per Shell Corrosion Allowance Connections In Size & Out Rating Intermediate Tube No. OD in Tube Type Shell Channel or Bonnet Tubesheet-Stationary Floating Head Cover Baffles-Cross Baffles-Cross Baffles-Cross Baffles-Crog Supports-Tube Bypass Seal Arrangement Expansion Joint v ⁻ Inlet Nozzle Gaskets-Shell Side Floating Head Code Requirements Weight / Shell Remarks	CONSTRU psig oF in in n;Thk (Min/A ID Ty	vg) OD U-Bend Fille	NE SHELL Side / / in;Length in Entrance	Material Shell Cover Channel Cov Tubesheet-F Impingemen %Cut (Diam/ Seal Type Tube-to-Tub Type Tube Side	e Side / / / ft;Pitch / rer loating t Protection /Area) esheet Joint Esheet Joint Bu	Sketch (Bu in Spacing: c/c Type Bundle Exit Class ndle	⊲-30 ☆60 (Integ.)	⊡ 90 ↔ 45 (Remov.)
31 32 33 34 35 36 37 38 40 41 42 44 44 46 47 49 51 52 54 55 55 55 55 55 55 55	Trainster Rate, Service Design / Test Pressure Design Temp. Max/Min No. Passes per Shell Corrosion Allowance Connections In Size & Out Rating Intermediate Tube No. OD in Tube Type Shell Channel or Bonnet Tubesheet-Stationary Floating Head Cover Baffles-Cross Baffles-C	CONSTRU psig °F in n;Thk (Min/A ID Ty	CTION OF O Shell vg) OD U-Bend Bundle f Fille	NE SHELL Side 7 7 in;Length in in Entrance	Atterial Material Shell Cover Channel Cover Channel Cov Tubesheet-F Impingeme %Cut (Diam/ Seal Type Tube-to-Tub Type Tube Side	e Side / / ft;Pitch / rer loating t Protection Area) esheet Joint Esheet Joint Bu	Sketch (Bu in Spacing: c/c Type Bundle Exit Class ndle	Inde/Nozzli ⊲-30 ☆ 60 (Integ.) Inlet	E 90 \$45 (Remov.)
31 32 33 34 35 36 37 38 39 41 42 43 44 45 51 52 53 55 56 57 58 9 0	Trainster Rate, Service Design / Test Pressure Design / Test Pressure Design / Test Pressure Design / Test Pressure Connections In Size & Out Rating Intermediate Tube No. OD in Tube Type Shell Channel or Bonnet Tubesheet-Stationary Floating Head Cover Baffles-Long Supports-Tube Bypass Seal Arrangement Expansion Joint \v^-Inlet Nozzle Gaskets-Shell Side Floating Head Code Requirements Weight / Shell Remarks	CONSTRU psig oF in n;Thk (Min/A ID Ty	CTION OF O Shell y y y y y y y y y y y y y y y y y y	NE SHELL Side 7 7 in;Length in in Entrance d with Water	Material Material Shell Cover Channel Cov Tubesheet-F Impingemen %Cut (Diam) Seal Type Tube-to-Tub Type Tube Side	e Side / / ft;Pitch / rer loating t Protection /Area) esheet Joint Esheet Joint Bu	Sketch (Bu in Spacing: c/c Type Bundle Exit Class ndle	⊴-30 ☆60 (Integ.)	E 90 ↔ 45 (Remov.) in

Section 3: G - General Fabrication and Performance Information

- Operating conditions req'd
 - Normal
 - Start-Up
 - Shut-Down
 - Steam Out
 - Upset
- Leads to Mean metal temps
 - Calculate thermal expansion

This may happen if you don't give the fabricator the correct info.

Section 4: E – Installation, Operation, and Maintenance

- Installation guidelines
- Start-up/shut-down recommendations
- Bolted joint tightening
- Maintenance and cleaning
- Locating tube leaks
- Bundle removal

Section 5 – RCB-1 - SCOPE OF TEMA STANDARDS

Applicable to shell and tube heat exchangers which do NOT exceed the following criteria –

- 1. Inside diameters of 100"
- 2. Design pressures exceeding 3000 psi

Intent is to limit the max wall thickness to 3" & max stud diameter to 4".

Section 5 – RCB-1 - SCOPE OF TEMA STANDARDS

RCB Definitions – 3 classes for design and fabrication

- 1. Class "R"
 - Generally <u>severe</u> requirements of petroleum and related processing applications
- 2. Class "C"
 - Generally <u>moderate</u> requirements of commercial and general processing applications
- 3. Class "B"
 - Chemical process service

Section 5 – RCB-2 - TUBES

RCB-2.3.1 U-Bend Requirements

When U-bends are formed, it is normal for the tube wall at the

outor radius to thin

Sponsored by:

CUST-O-FAB

where

elliott

 $t_o = t_1$

- $t_0 =$ Required tube wall thickness prior to bending, in. (mm)
- t_1 = Minimum tube wall thickness calculated by Code rules for a straight tube subjected to the same pressure and metal temperature, in. (mm)
- d_0 = Outside tube diameter, in. (mm)
- C = Thinning constant:

 $1 + \frac{d_o}{CR}$

- = 4, typical for the following materials: carbon steel, low alloy, ferritic stainless, austenitic stainless, other relatively non-work-hardening materials, and copper alloys.
- = 2, typical for the following materials: martensitic stainless, duplex stainless, super austenitic stainless, titanium, high nickel alloys, and other work-hardening materials.

Note: different constants may be used based upon other considerations of tube thinning and previous experience.

R = Mean radius of bend, in. (mm)

Section 5 – RCB-2 - TUBES

RCB-2.3.4 TUBE PATTERN

- Square Pattern
 - Removable bundle units
 - Mechanical cleaning req'd
 - Tube lanes to be continuous
- Triangular Pattern

Sponsored by:

 Should <u>NOT</u> be used when shellside is to be cleaned mechanically

elliott

Section 5 – RCB-3 - SHELLS & SHELL COVERS

Minimum shell thickness – ASME Code compliance req'd but no less than -

TABLE R-3.1.3 MINIMUM SHELL THICKNESS Dimensions in Inches (mm)									
			Minimum Th	nickness					
Nominal S	hell Diameter	Carbo	on Steel		Allo	oy *			
		Pipe	Plate						
6	(152)	SCH. 40	-		1/8	(3.2)			
8-12	(203-305)	SCH. 30	-		1/8	(3.2)			
13-29	(330-737)	SCH. STD	3/8 (9	0.5)	3/16	(4.8)			
30-39	(762-991)	-	7/16 (1	1.1)	1/4	(6.4)			
40-60	(1016-1524)	-	1/2 (1	2.7)	5/16	(7.9)			
61-80	(1549-2032)	-	1/2 (1	2.7)	5/16	(7.9)			
81-100	(2057-2540)	-	1/2 (1	2.7)	3/8	(9.5)			

Section 5 – RCB-4 - BAFFLES & SUPPORT PLATES

TEADIT VANTERUS

Sangeeta Bakshi & Wade Armer - TEMA Technical Committee

Sealing for a Safer and Greener Tomorro

WARD

Section 5 – RCB-4 - BAFFLES & SUPPORT PLATES

Nominal Sh		ons in Inches (mm)	E TO SHELL		NCES										
Norminal Sh		Design ID of Shel													
6-17 (1 18-39 (4	152-432) 157-991)	1/8 3/16	(3.2) (4.8)					TA	BLE R-4.4	4.1					
40-54 (1	1016-1372)	1/4	(6.4)				BAF	FLE OR \$	SUPPOR	T PLATE	THICKN	ESS			
55-69 (1	1397-1753)	5/16	(7.9)					Dime	ensions in	n Inches	(mm)				
70-84 (1	1778-2134)	3/8	(9.5)							Plate Th	nickness				
85-100 (2	70-84 (1778-2134) 3/8 (9.5) 85-100 (2159-2540) 7/16 (11.1)		Nomi	nal Shell ID	Unsup	ported tu	ube lengt	h betwee and baffl	n central	baffles. E	End space	ces betwe	en tube	esheets	
00 100 (2			(- 1					and ban						
						24 (61) Und	0) and der	Over 2 to 36 Inclu	4 (610) (914) Isive	Over 3 to 48 Incl	36 (914) (1219) usive	Ove (1219 (15 Incl	er 48 9) to 60 524) usive	Ov((1	er 60 524)
				6-14 15-28 29-38	(152-356) (381-711) (737-965) (001-1524)	24 (61) Und 1/8 3/16 1/4	0) and der (3.2) (4.8) (6.4)	Over 2 to 36 Inclu 3/16 1/4 5/16 2/9	4 (610) (914) usive (4.8) (6.4) (7.9)	Over 3 to 48 Inclu 1/4 3/8 3/8	(6.4) (9.5) (9.5) (12.7)	Ove (1219 (15 Inclu 3/8 3/8 1/2	er 48 1) to 60 524) usive (9.5) (9.5) (12.7) (15.0)	Ove (15) 3/8 1/2 5/8 5/8	(9.5) (12.7) (15.9)

CELLIOTT FOR TECHNOLOGIES TRANSLEDIC OF THE SUPERIOR

Brask, Inc.

Section 5 – RCB-4 - BAFFLES & SUPPORT PLATES

	TABLE RCB-4.5.2								
RCB-4 5 -	MAXIMUM UNSUPPORTED STRAIGHT TUBE SPANS Dimensions in Inches (mm)								
			Tube Materials and Temperature Limits ° F (° C)						
Spacing of Baffles &	Tube	e OD	Carbon Steel & High (399)	Alloy Steel, 750	Aluminum & Aluminum Alloys, Copper Copper Alloys, Titanium Alloys At Code				
			Low Alloy Steel, 850	(454)	Maximum Allowable	Temperature			
Support Plates			Nickel-Copper, 600	(316)					
			Nickel, 850 (454)						
			Nickel-Chromium-Iron, 1000 (538)						
	1/4	(6.4)	26	(660)	22	(559)			
	3/8	(9.5)	35	(889)	30	(762)			
	1/2	(12.7)	44	(1118)	38	(965)			
	5/8	(15.9)	52	(1321)	45	(1143)			
	3/4	(19.1)	60	(1524)	52	(1321)			
	7/8	(22.2)	69	(1753)	60	(1524)			
	1	(25.4)	74	(1880)	64	(1626)			
	1 1/4	(31.8)	88	(2235)	76	(1930)			
	1 1/2	(38.1)	100	(2540)	87	(2210)			
	2	(50.8)	125	(3175)	110	(2794)			
	2 1/2	(63.5)	125	(3175)	110	(2794)			
	3	(76.2)	125	(3175)	110	(2794)			

The Hest Exchanger Prople

Sangeeta Bakshi & Wade Armer - TEMA Technical Committee

WARD

Section 5 – RCB-4 - BAFFLES & SUPPORT PLATES

RCB-4.4 –

Thickness of Baffles &

Sunnart Diatas

LONGITUDINAL BAFFLE

R-4.4.2.2 WELDED-IN LONGITUDINAL BAFFLES

The thickness of longitudinal baffles that are welded to the shell cylinder shall not be less than the thicker of 1/4" (6.4 mm) or the thickness calculated using the following formula:

$$t = b \sqrt{\frac{qB}{1.5S}}$$

where

- t = Minimum baffle plate thickness, in. (mm)
- B = Table value as shown in Table RCB-9.1.3.2 (linear interpolation may be used)
- q = Maximum pressure drop across baffle, psi (kPA)
- S = Code allowable stress in tension, at design temperature, psi (kPa)
- b = Plate dimension. See Table RCB-9.1.3.2, in. (mm)
- a = Plate dimension. See Table RCB-9.1.3.2, in. (mm)

Sponsored by:

Section 5 – RCB-4 - BAFFLES & SUPPORT PLATES

SHELL ENTRANCE OR EXIT AREA

RCB-4.6 – Impingement baffles & Erosion Protection

> Guidelines to prevent erosion at entrance & exit areas

FIGURE RGP-RCB-4.6.2.1.2 IMPINGEMENT PLATE – PARTIAL LAYOUT

Section 5 – RCB-4 - BAFFLES & SUPPORT PLATES

RCB-4.7 –

Sponsored by:

Tie Rods & Spacers

Brask, Inc

- # & size of tie rods
- Any baffle segment
 - min 2 nts of sunnort TABLE R-4.7.1

CUST-O-FAB

Dimensions in Inches (mm)									
No	minal	Tie	e Rod	Minimum					
Shell [Diameter	Dia	ameter	Number of Tie					
				Rods					
6 – 15	(152-381)	3/8	(9.5)	4					
16 – 27	(406-686)	3/8	(9.5)	6					
28 – 33	(711-838)	1/2	(12.7)	6					
34 – 48	(864-1219)	1/2	(12.7)	8					
49 - 60	(1245-1524)	1/2	(12.7)	10					
61 – 100	(1549-2540)	5/8	(15.9)	12					

HEAT EXCHANGERS

Section 5 – RCB-4 - BAFFLES & SUPPORT PLATES

Sponsored by:

Brask, Inc.

The Heat Exchanger People

Section 5 – RCB-5 -FLOATING END CONSTRUCTION

Sangeeta Bakshi & Wade Armer - TEMA Technical Committee

WARD

<u>Section 5 – RCB-5 –</u> <u>FLOATING END</u> CONSTRUCTION

Sponsored by:

Section 5 – RCB-6 - GASKETS

- Min gasket width
- **Confined vs Unconfined**

For dimensions and tolerances, see Figure F-3.

CONFINED GASKET

SPIRAL WOUND GASKET WITH OUTER METAL RING

Section 5 – RCB-7 - TUBESHEETS

- Tubesheet thk per ASME code
- When code rules don't apply, consider TEMA Appendix A.
- Min tubesheet req's when expanding tubes
- Double tubesheet design rules -

Sponsored by:

Brask, Inc.

The Heat Exchanger People

Section 5 – RCB-7 - TUBESHEETS

TABLE RCB-7.2.1									
		NCES							
	Nominal Tu	be Hole Diameter							
	Stan (a	dard Fit a)	Special (Close Fit b)	Over Tolerance; 96% of tube holes must meet value in column (c). Remainder may not exceed value in column (d)				
Nominal Tube OD	Nominal Diameter	Under Tolerance	Nominal Diameter	Under Tolerance	(c)	(d)			
1/4	0.259	0.004	0.257	0.002	0.002	0.007			
3/8	0.384	0.004	0.382	0.002	0.002	0.007			
1/2	0.510	0.004	0.508	0.002	0.002	0.008			
5/8	0.635	0.004	0.633	0.002	0.002	0.010			
3/4	0.760	0.004	0.758	0.002	0.002	0.010			
7/8	0.885	0.004	0.883	0.002	0.002	0.010			
1	1.012	0.004	1.010	0.002	0.002	0.010			
1 1/4	1.264	0.006	1.261	0.003	0.003	0.010			
1 1/2	1.518	0.007	1.514	0.003	0.003	0.010			
2	2.022	0.007	2.018	0.003	0.003	0.010			
2 1/2	2.528	0.010	2.523	0.004	0.004	0.010			
3	3.033	0.012	3.027	0.004	0.004	0.010			

DUNN

HEAT EXCHANGERS

CUST-O-FAB

Sponsored by:

Section 5 – RCB-7 - TUBESHEETS

RCB 7.3 – Tube-to-tubesheet ioints

CUST-O-FAB

Tubing Material	Target Percent Wall Reduction
Carbon steel and low alloy steel	5 to 8
Stainless steel	5 to 8
Duplex stainless steel	4 to 6
Titanium and work hardening non-ferrous	4 to 6
Admiralty and non-work hardening non-ferrous	6 to 9
Copper and copper alloys	7 to 10

These suggested amounts are based on industry standards. The optimal amount of expansion could vary from these amounts, and should be agreed upon between the owner and manufacturer. Higher pin-count expanders should be considered for titanium tubes when size permits. Please see RGP-RCB-7.3 for factors that may affect the optimum amount of wall reduction.

HEAT EXCHANGERS

Flexitallic

The Heat Exchanger People

<u>Section 5 – RCB-8 – FLEXIBLE SHELL ELEMENTS</u>

Figure RCB-8.2 defines the nomenclature used in the following paragraphs based upon nominal dimensions of the flexible elements.

FIGURE RCB-8.2

Sangeeta Bakshi & Wade Armer - TEMA Technical Committee

VAHTERUS

WARD

Section 5 – RCB-9 – CHANNELS, COVERS, & BONNETS

TABLE RCB-9.1.3.1

NOMINAL PASS PARTITION PLATE THICKNESS

Dimensions are in incres (min)									
Nominal Diameter	Carbon Steel	Alloy Material							
Less than 24	3/8	1/4							
(610)	(9.5)	(6.4)							
24 to 60	1/2	3/8							
(610-1524)	(12.7)	(9.5)							
61 to 100	5/8	1/2							
(1549-2540)	(15.9)	(12.7)							

RCB-9.1.3.2 PASS PARTITION PLATE FORMULA

Sponsored by:

Brask, Inc.

<u>Section 5 – RCB-11 –</u> END FLANGES AND BOLTING

- MIN BOLT SIZE
 - Class R = 3/4"
 - Class C = 1/2"
 - Class B = 5/8"
- SECTION 9, Table D-5

CUST-O-FAB

TABLE D-5 BOLTING DATA – RECOMMENDED MINIMUM

			-	(dimensio	ons in inch	es unless	noted)		-		
bolt	Thre	Nads	Nut Dim	ensions	Bolt	Radial	Radial	Edge	Wrench	Bolt	bolt
Size	No. of	Root	Across	Across	Spacing	Distance	Distance	Distance	Diameter	Hole	Size
dB	Threads	Area in ²	Flats	Corners	В	Rh	Rr	E	а	dH	dB
1/2	13	0.126	7/8	0.969	1 1/4	13/16	5/8	5/8	1 1/2	5/8	1/2
5/8	11	0.202	1 1/16	1.175	1 1/2	15/16	3/4	3/4	1 3/4	3/4	5/8
3/4	10	0.302	1 1/4	1.383	1 3/4	1 1/8	13/16	13/16	2 1/16	7/8	3/4
7/8	9	0.419	1 7/16	1.589	2 1/16	1 1/4	15/16	15/16	2 3/8	1	7/8
1	8	0.551	1 5/8	1.796	2 1/4	1 3/8	1 1/16	1 1/16	2 5/8	1 1/8	1
1/8	8	0.728	1 13/16	2.002	2 1/2	1 1/2	1 1/8	1 1/8	2 7/8	1 1/4	1 1/8
1/4	8	0.929	2	2.209	2 13/16	1 3/4	1 1/4	1 1/4	3 1/4	1 3/8	1 1/4
3/8	8	1.155	2 3/16	2.416	3 1/16	1 7/8	1 3/8	1 3/8	3 1/2	1 1/2	1 3/8
1/2	8	1.405	2 3/8	2.622	3 1/4	2	1 1/2	1 1/2	3 3/4	1 5/8	1 1/2
5/8	8	1.680	2 9/16	2.828	3 1/2	2 1/8	1 5/8	1 5/8	4	1 3/4	1 5/8
3/4	8	1.980	2 3/4	3.035	3 3/4	2 1/4	1 3/4	1 3/4	4 1/4	1 7/8	1 3/4
7/8	8	2.304	2 15/16	3.242	4	2 3/8	1 7/8	1 7/8	4 1/2	2	1 7/8
2	8	2.652	3 1/8	3.449	4 1/4	2 1/2	2	2	4 3/4	2 1/8	2
2 1/4	8	3.423	3 1/2	3.862	4 3/4	2 3/4	2 1/4	2 1/4	5 1/4	2 3/8	2 1/4
2 1/2	8	4.292	3 7/8	4.275	5 1/4	3 1/16	2 1/2	2 3/8	5 7/8	2 5/8	2 1/2
2 3/4	8	5.259	4 1/4	4.688	5 3/4	3 3/8	2 3/4	2 5/8	6 1/2	3	2 3/4
}	8	6.324	4 5/8	5.102	6 1/4	3 5/8	3	2 7/8	7	3 1/4	3
1/4	8	7.487	5	5.515	6 5/8	3 3/4	3 1/4	3	7 1/4	3 1/2	3 1/4
1/2	8	8.749	5 3/8	5.928	7 1/8	4 1/8	3 1/2	3 1/4	8	3 3/4	3 1/2
3/4	8	10.108	5 3/4	6.341	7 5/8	4 7/16	3 3/4	3 1/2	8 5/8	4	3 3/4
L I	8	11.566	6 1/8	6.755	8 1/8	4 5/8	4	3 5/8	9	4 1/4	4

Nut dimensions are based on American National Standard ASME B18.2.2

<u>Section 5 – RCB-11 – END FLANGES AND BOLTING</u>

Section 6: V – Flow Induced Vibration

- Shell side fluid flow can sometimes cause tubes to vibrate and become damaged.
- This phenomenon is very complex.
- This section defines the basic data which should be considered when evaluating vibration problems.

COLLICTT

CUST-O-FAE

Grask, Inc

Sangeeta Bakshi & Wade Armer - TEMA Technical Committee

VAHTERUS

Superior UPERIOR

Section 7: T – Thermal Relations

- The basic size and configuration of a heat exchanger needed to achieve the required heat transfer is determined in the thermal design.
- This section provides procedures for thermal design including effects of fouling and determination of mean metal temperatures for mechanical design.

T-1.2 BASIC HEAT TRANSFER RELATION

$$A_0 = \frac{Q}{U\Delta t_m}$$

where

- A_0 = Required effective outside heat transfer surface, ft²
- Q = Total heat to be transferred, BTU/hr
- U= Overall heat transfer coefficient, referred to tube outside surface BTU/hr ft² °F
- Δt_m = Corrected mean temperature difference, °F

The tube mean metal temperature is dependent not only on the tube fluid average temperature, but also the shell fluid average temperature, the shell and tube heat transfer coefficients, shell and tube fouling resistances, and tube metal resistance to heat transfer, according to the following relationship

$$t_{M} = \overline{T} - \left[\frac{\left(\frac{1}{h_{o}} + r_{o}\right) \left(\frac{1}{E_{f}}\right) + \frac{r_{w}}{2}}{\left(\frac{1}{h_{o}} + r_{o}\right) \left(\frac{1}{E_{f}}\right) + r_{w} + \left(r_{f} + \frac{1}{h_{f}}\right) \left(\frac{A_{o}}{A_{f}}\right)} \right] \left[\overline{T} - \frac{1}{2}\right]$$

where

 $t_{\scriptscriptstyle M}$ = Tube mean metal temperature, °F

 \bar{t} = Tube side fluid average temperature, °F (see Paragraph T-4.4) All other terms are as defined by Paragraphs T-1.3 and T-4.3.1.

red by:

Section 10: RGP -

Recommended Good Practice

- Additional information and guidance relative to design of exchangers.
- Information should be considered but is not required.

Example: Support Design

2022

Section 10: RGP –

Recommended Good Practice

Example: Fouling Factors

RGP-T-2.1 TYPES OF FOULING

Currently five different types of fouling mechanisms are recognized. They are individually complex, often occurring simultaneously, and their effects may increase pressure drop, accelerate corrosion and decrease the overall heat transfer coefficient.

(1) Precipitation Fouling

Crystallization is one of the most common types of precipitation fouling. It occurs in many process streams, cooling water and chemical streams. Crystallization scale forms as the result of over-saturation of a relatively insoluble salt. The most common, calcium carbonate, forms on heat transfer surfaces as a result of the thermal decomposition of the bicarbonate ion and the subsequent reaction with calcium ions.

(2) Particulate Fouling

Sedimentation is the most common form of particulate fouling. Particles of clay, sand, silt, rust, etc. are initially suspended in the fluid and form deposits on the heat transfer surfaces Sedimentation is frequently superimposed on crystallization and possibly acts as a catalyst for certain types of chemical reaction fouling.

(3) Chemical Reaction Fouling

Surface temperatures and the presence of oxidation promoters are known to significantly influence the rate of build up of this fouling type. Coking, the hard crust deposit of hydrocarbons formed on high temperature surfaces, is a common form of this type of fouling.

(4) Corrosion Fouling

Iron oxide, the most common form of corrosion product, is the result of an electro-chemica reaction and forms as a scale on iron-containing, exposed surfaces of the heat exchanger This scale produces an added thermal resistance to the base metal of the heat transfer surface.

(5) Biological Fouling

Organic material growth develops on heat transfer surfaces in contact with untreated water such as sea, river, or lake water. In most cases, it will be combined or superimposed on other types of fouling such as crystallization and sedimentation. Biological growth such as algae, fungi, slime, and corrosive bacteria represent a potentially detrimental form of fouling. Often these micro-organisms provide a sticky holding medium for other types of fouling which would otherwise not adhere to clean surfaces.

	Fouling Resistances for Industrial Fluids	
	Oils:	
	Fuel Oil #2	0.002
	Fuel Oil #6	0.005
	Transformer Oil	0.001
	Engine Lube Oil	0.001
	Quench Oil	0.004
,	Gases And Vapors:	
	Manufactured Gas	0.010
	Engine Exhaust Gas	0.010
	Steam (Non-Oil Bearing)	0.0005
	Exhaust Steam (Oil Bearing)	0.0015-0.002
	Refrigerant Vapors (Oil Bearing)	0.002
	Compressed Air	0.001
s. +	Ammonia Vapor	0.001
	CO ₂ Vapor	0.001
	Chlorine Vapor	0.002
	Coal Flue Gas	0.010
	Natural Gas Flue Gas	0.005
	Liquids:	
	Molten Heat Transfer Salts	0.0005
	Refrigerant Liquids	0.001

Sponsored by:

🌀 Ohmstede

CO₂ Liquid

71177

Non-Mandatory Appendix A: Tubesheet Design

- Legacy tubesheet design method that has been superseded by ASME Part UHX for most new exchangers.
- Method may apply to existing exchangers, designs not in the scope of UHX, or exchangers not requiring ASME code design.

A.1.5.4 EFFECTIVE TUBE SIDE DESIGN PRESSURE

The effective tube side design pressure is to be taken as the greatest absolute value of the following:

 $P = \frac{P_t + P_{Bt} + P_{Bt}}{2}$ or $P = \frac{P_t' + P_{Rt}}{2}$

or $P = P_t' - P_s' + P_R$

$$\frac{P_t' - P_s' + P_{Bt} + P_d}{2}$$

when P'_s is negative

when P' is positive

where

$$= P_{t}\left[\frac{1+0.4 J K (1.5+f_{t})}{1+J K F_{q}}\right]$$

 P_t = Tube side design pressure, psi (kPa) (For vacuum design, P_t is negative.)

$$f_t = 1 - N \left(\frac{d_0 - 2t}{G} \right)$$

Conclusion

- Along with design codes, the TEMA Standard is used worldwide as the construction standard for shell and tube heat exchangers.
- Specify your next exchanger be built to TEMA Standards to ensure industry-leading quality, reliability, and performance.

Conclusion

- Purchase the TEMA Standard at:
 - <u>shop.tema.org</u>
 - **\$**(914) 332-0040
 - 📧 info@tema.org

VAHTERUS WAR

