

HEAT EXCHANGER TUBE MATERIAL RESPONSE TO HIGH PRESSURE WATERJET IMPACT

AND THE FACTORS AFFECTING THE RISK OF DAMAGE DURING THE CLEANING PROCESS

Research and Publication: D. Wright, Ret., Director of R&D StoneAge, Inc. Durango, Colorado, U.S.A

Presented By: Frank G. Romito, Senior Training Specialist StoneAge, Inc. Pasadena, TX, U.S.A

SR SUPERIOR UTIANT VANTERUS

🌀 Ohmstede

WAR

INTRODUCTION

METHODOLOGY

- Hydroblasting or High Pressure Water-Jetting has become widely accepted to efficiently remove fouling from heat exchanger tubes (**tube-side** & shell-side)
- Manually-fed, positioned, and manipulated techniques are present, but are succeeded by mechanized (semiautomated) or fully-automated cleaning techniques

• CONCERN

- Generally, Carbon Steel & Stainless-Steel substrate are reasonably resistant to the velocity of properly applied hydroblasting cleaning techniques, however these materials are not impervious to waterjet damage
- Equipment constructed of softer metallic materials like brass, nickel, and copper alloys, may raise a greater concern when specified to be serviced via hydroblasting
- MITIGATION
 - UNDERSTANDING the impact of a high-pressure waterjet conveyed by orifice(s)
 - **IDENTIFYING POTENTIAL** for cavitation-erosion to adversely affect substrate beyond foulant removal
 - **KNOWING** deployed equipment components & characteristics within the operation

WHY?

Testing was conducted to aid in the specification of heat exchanger tube cleaning processes involving:

- **Operating Parameters** (Pressure, Volume, Clearance Fit, Rotation, Traverse Rate)
- Types of Nozzle Assemblies (Static, Self-Rotary, Powered-Rotary)
- Personnel Training / Automated Controls (Operating Procedures, Awareness, Countering Human-Error with programmed points of function)

Frank Romito - StoneAge

WHAT ARE THE RISKS?

CAVITATION EROSION

• The application of a water-jet upon a metallic surface may remove material through *cavitation*

erosion, but what determines the risk?

- MATERIAL TYPE
- JET IMPACT
- JET DWELL-TIME
- JET ROTATION
- JET ANGLE

Grase, Inc.

- JET TRAVERSE / TRANSLATION
- JET DIAMETER

Sponsored by:

Frank Romito - StoneAge

1. **NON-ROTARY**

- Static Assembly applied to X Material
- Stand-Off • **Distance**

comparable to an appropriate Clearance Fit application

Exposure Analysis @ 10, 30, and 60 seconds Duration

CONDUCTED TEST PROCEDURES

2. ROTARY

- **Rotary Assembly** applied to X Material
- **Radial Rotation** • by itself reduces amount of potential damage to substrate – allows consideration for higher working pressures
 - Exposure **Analysis** Noting the difference in material removal due to reduced jet dwelltime

3. ROTARY + TRAVERSE

- **Rotary Assembly** applied to X Material
- Linear Traverse of the rotating assembly adds another dimension to measure a reduction in potential for substrate damage
- **Exposure Analysis** Noting the lack of material removal due to reduced jet dwell-time via rotation compounded with linear traverse

4. ADDITIONAL VARIABLES

2022

- Varying Stand-Off Distances
- Measuring Material-Removal decreasing potential with steeper attackangles
- **Increasing Flow Rate** to adjust jet power comparing exposure durations

Sponsored by:

•

AMERICAS

CONDUCTED TEST EXCERPTS

MATERIALS USED IN TESTING

Material	UNS	Form	Other Common Names
Copper-Nickel 90/10	C70600	Sheet	Cupro-Nickel
110 Copper	C11000	Sheet	CDA 110
101 Copper	C10100	Tube	C101
260 Brass	C26000	Tube	Cartridge Brass
400 Nickel	N04400	Sheet	Monel 400
304 Stainless Steel	S30400	Plate	304 Stainless Steel
1018 CDF Carbon Steel	G10180	Plate	1018 Carbon Steel
Titanium Grade 2	R50400	Sheet	Titanium Type 2

ORIFICE DIAMETERS & RADIAL CONFIGURATIONS

Head Name	Orifice Type	Pattern 1	Orifice Size	Pattern 2	Orifice Size
"A"	Drilled	2 X 90°	.91 mm (.036")	2 X 105°	.81 mm (.032")
"D"	Drilled	2 X 90°	.66 mm (.026")	2 X 105°	.66 mm (.026")
"UHP"	Sapphire	2 X 85°	.25 mm (.010")	2 X 110°	.36 mm (.014")

CONDUCTED TEST EXCERPTS

Material Specifications: Copper Nickel 90/10, 110 Copper

NOZZLE ASSY. STYLE	IMPACTING ORIFICE(S) DIAMETER	TRAVERSE RATE
Static	.026" (.66MM)	None Applied
ORIFICE LOCATION	STAND-OFF DISTANCE	SYSTEM OPERATING PRESSURE
Radially @ 90°	.189" (4.8MM)	15,000 PSI (1034 bar, 103 Mpa)

AMERICAS

NOZZLE ASSY. STYLE	IMPACTING ORIFICE(S) DIAMETER	ASSEMBLY TRAVERSE RATE
Self-Rotary	.026" (.66MM)	1.97"/ Sec (50MM / Sec)
ORIFICE LOCATION	STAND-OFF DISTANCE	SYSTEM OPERATING PRESSURE
Radially @ 90°, Radially @ 105°	.189" (4.8MM)	15,000 PSI (1034 bar, 103 Mpa)

CONDUCTED TEST EXCERPTS

Unique and Insightful Test Results

Too Close? Too Far Away?

2022

- How steep of an angle creates excessive stand-off for effectivity?
- At what point is my mitigation tactic STRONGER than the substrate?
- The Ed The Result of 50 Passes with Rotating Head at 228 MPa (33,000 psi) in 1018 CDF Plate Figure 16.

KEY CONCLUSIONS GATHERED

✓ "KEEP IT MOVING!"

Potential for substrate damage post-foulant removal / penetrated-foulant is lessened by keeping jets **ROTATING and TRAVERSING**

✓ IMPLEMENT CONTROLS!

Whether limiting system pressure based on job-scope & material identification or utilizing practices & sensors that inhibit inadvertent jet-contact – **PLAN THE APPROACH**

✓ JET FOR SUCCESS!

Considering appropriate flow by sizing orifices correctly, positioning jets where you need them to work, and clearance-fitting for the most effective stand-off will keep your time spent in each tube to a minimum – saving water and reducing **YOUR EXPOSURE DURATION FOR RISK**

HEAT EXCHANGER TUBE MATERIAL RESPONSE TO HIGH PRESSURE WATERJET IMPACT

AND THE FACTORS AFFECTING THE RISK OF DAMAGE DURING THE CLEANING PROCESS

Research and Publication: D. Wright, Ret., Director of R&D StoneAge, Inc. Durango, Colorado, U.S.A

Presented By: Frank G. Romito, Senior Training Specialist StoneAge, Inc. Pasadena, TX, U.S.A

SR SUPERIOR

THANK YOU!

🌀 Ohmstede

elliott Flexitallic

