

CONFERENCE & EXPO AMERICAS

Sponsored by:

Graphite Compound

The perfect solution for heat transfer surfaces in corrosive environments.

TECHNOFORM: Leading partner for thermally and mechanically optimized profile solutions

CONFERENCE & EXPO

HEAT

XCHANGER

Our motivation: Existing challenging trade-off between main requirements of heat transfer surfaces

heat conductivity pressure resistance acid resistance fouling properties economic efficency

heat conductivity pressure resistance acid resistance fouling properties economic efficency

Our motivation: Existing challenging trade-off 2022 between main requirements of heat transfer surfaces **Fluorpolymers, Glas** limits in pressure resistance & heat conductivity **Stainless steels** high limits in corrosion resistance Unique balance between **Graphite compound** all main requirements limits in corrosion resistance High(er) grade steels **Impregnated graphite** limits in fouling properties Alloys, Hastelloy, Monel limits in long-life corrosion resistance Material **Acqusition costs** 🌀 Ohmstede

VAHTERUS

elliott

Graphite compound: A new class of material for heat transfer surfaces

2022

Full graphite tubes need complexe and energy-heavy production steps

Development of a **heat conductivity optimized extrusion** process for a **"graphite compound"**

Graphite compound: A new class of material for heat 2022 transfer surfaces

- Acid resistant against virtually all common fluids
- ✓ Great **thermal conductivity** for corrosive environments
- ✓ ASME-certified pressure resistance
- Almost **no fouling** properties
- Economic efficiency over the entire operating time of a heat exchanger

...let's have a closer look on the different material properties.

Corrosion resistance: Advantages of graphite compound in terms of acid resistance

Graphite (compound) counts as one of the most chemically resistant materials

Organic chemistry

Graphite is resistant to virtually **all media** in the field of organic chemistry and therfore for almost **all common chemical proccesses**.

Inorganic chemistry

Graphite is resistant to **almost all inorganic media** like **many acids and bases.**

Limitations of graphite compound

Strong oxidizing acids (e.g. nitric acid)

Mixed acids can cause unpredictable reactions and must be tested

Sponsored by:

AMERICAS

Corrosion resistance: Advantages of graphite compound in terms of acid resistance

Pure Sulphuric Acid

Temperature, °C

Sulphuric Acid with 2000ppm Chloride

Temperature, °C

Isocorrosion diagram, 0.1 mm/year, in naturally aerated sulphuric acid of chemical purity. Broken-line curve represents the boiling point.

Isocorrosion diagram, 0.1 mm/year, in sulphuric acid with an addition of 2000 ppm chlorides.

Corrosion resistance: Advantages of graphite compound in terms of acid resistance.

Flexural strength of graphite compound after exposure to H2SO4 60% @ 140°C

Hexitallic

Start of laboratory test

...and after

180 days

Thermal conductivity: The "alpha-factors" have a great influence on the overall performance

Gas at minimum on one site

Fluids on both sites

Sponsored by:

Sponsored by:

Grase, Inc

CUST-O-FAB

HEAT EXCHANGER

AMERICAS

Pressure resistance: Certified material for almost all kinds of pressurized heat exchangers

Burst pressure along operating temperatures (24x1,5mm):

WARD

Pressure resistance: Certified material for almost all kinds of pressurized heat exchangers

ASME Boiler & Pressure Vessel Code VIII for UIG (PRT)

Fouling properties: Fouling causes significant performance reductions of a heat exchanger

Influence of deposits on thermal conductivity:

Fouling comparison in an operated heat exchanger:

Impregnated graphite

Dust

16

14

12

10

8

6

4

2

0

Heat conductivity [W/mK]

Lined steels

PFA

Glas

Important successfully completed projects by heat 2022 exchanger type

We would be pleased to write another success story together with you...

...so, let's talk heat transfer solutions!

