

AMERIC

Ultrasonic Cleaning Solution

Roberto Tomotaki, Heat Exchanger Advisor

Inspectioneering Sponsored by: (6) Charactering

Introductions

Roberto Tomotaki, Heat Transfer Specialist

- Career Heat Transfer Engineer (23 years)
- Former Americas Heat Exchanger Discipline Lead for ExxonMobil
- Current Heat Exchanger Advisor for Clean As New

The Fouling Challenge

- Fouling continues to be the biggest problem with Exchangers.
- Cost associated with exchanger fouling cost approximately 0.25% of GDP [US \$50 Billions] for industrialized countries. [*Stated in Fouling & Cleaning Conference 2019*]

The Fouling Challenge – Different Perspectives

Owner / Operator

- Ability to monitor exchanger performance [Large numbers to keep track]
- Optimize HX Cleaning Program [Evaluate Benefit to Cost]
- Exchanger technology telection

EPC

- Account for fouling or % overdesign and HX isolation hardware
- Evaluate low fouling technologies
- Justify the cost for instrumentation for HX monitoring

The Fouling Challenge – Different Perspectives

Heat Exchanger Vendor Technology Provider

- Compact Designs, Thermally Efficient
- Low Fouling High Shear, Metallurgy, Coatings, On-Line Cleaning Technologies
- Cleanability
- **Cleaning Technology**
- Safety / Minimize Waste
- Quality of Cleaning / Minimize HX Downtime

Traditional Cleaning Technology - Safety / Environmental

Safety

• Long Industry history of injuries during hydroblast cleaning [Line of Fire]

Environmental

- Typical hydroblast methods consume approx. 55 k gallons of water which turns into an effluent waste
- Poor cleaning leads to less efficient exchangers requiring more fuel consumption and environmental emissions

Traditional Cleaning Technology - Quality of Cleaning / Time Quality of Cleaning

- Difficulty to clean deep into the shellside of large exchangers
- Often inadequate for tubular inspection
- Require cleaning lanes, inadequate for compact HX designs

Downtime for Cleaning (Time)

- Relatively common for shellside cleaning to take several days for heavily fouled services
- Redo cleanings for inspection
- Extend outages, negatively impacting energy &

The Alternative Technology

How It Works

Cleaning Heat Exchanger Tubes

Cavitation bubbles form throughout the bundle both Inside AND outside the tubes, attacking the fouling, helping to soften it, break it up and loosen it from the metal surface

Ultrasonic waves

Cleaning Validation – Measured Trial

Visual

Borescope

Suitability for Inspection

Eddy CurrentIRIS

Heat Transfer Evaluation

HTRI	nal Results leased to the following HTRI Memb UNHEX LLC for Clean As New oberto Tomotaki	Page 1				
Xist 8.2 9/22/2020 16:07 SN: 19	9209-1315809830	US Units				
Shell 1 Rating - Horizontal Multipass Flor	V TEMA AET Shell With Single-Se	gmental Baffles				
Process Data	Hot Shellside	Cold Tubeside	Shellside Performance			
Fluid name Fluid condition Total flow rate (1000 Weight fraction vapor, In/Out remoerature. In/Out (7	Hot Hydrocarbon Sens. Liquid)-Ib/hr) 400.00 (-) 0.0000 0.0000 Deg E) 500.00 362.56	Cold Hydrocarbon Sens. Liquid 425.00 0.0000 0.0000 100.00 275.00	Nom vel, X-flow/window 2.00 / 3.22 Flow fractions for heat transfer 0.755 A=0.0890 B=0.5257 C=0.1898 E=0.1439 F=0.0515			
Skin temperature, Min/Max ([Wall temperature, Min/Max ([Pressure, In/Average Pressure drop, Total/Allowed	Deg F) 210.31 346.91 Deg F) 210.31 346.91 (psia) 400.00 398.85 (psi) 2.294	199.54 336.05 199.54 336.05 400.00 393.76 12.487	Shellside Heat Transfer Corrections Total Beta Gamma End Fin 0.974 0.910 1.070 0.972 1.000			
Velocity, Mid/Max allow (Mole fraction inert Average film coef. (Btu/ft2 Heat transfer safety factor	(tt/sec) 1.80 () 268.40 () 1.000	6.94 536.22 1.0000	Pressure Drops (Percent of Total) Cross Window Ends Nozzle Shell Tube 43.55 ⁺ 17.54 ⁺ 9.59 Inlet ⁺ 11.54 ⁺ 2.49 MOMENTUM 0.00 Outlet ⁺ 17.79 ⁺ 1.80			
Fouling resistance (ft2-hr-	F/Btu) 0.00000	0.00000	Two-Phase Parameters			
Overall coef., Reqd/Clean/Actual Heat duty, Calculated/Specified	(Btu/ft2-hr-F) 56.25 / (MM E hr) 43.888 /	* 155.89 / * 155.89	Method Inlet Center Outlet Mix F			
Effective overall temperature diffe EMTD = (MTD) * (DELTA) * (F/G	erence (Deg F) 224.9 (H) (Deg F) 226.6	° 0.9923 ° °1.0000	H. T. Parameters Shell Tube Overall wall correction 0.890 1.018 Midpoint Prandti no. 4.25 5.05			
See Runtime Messages Repo warnings.	rt for		Midpoint Reynolds no. 102734 98175 Bundle inlet Reynolds no. 91796 60188 Bundle outlet Reynolds no. 60142 134818 Fouling layer (inch)			
Exchanger Fluid Volume:	s Ugula L		Thermal Resistance, %			
Approximate shellsic (ft3)	115.21		Shell Tube Fouling Metal Over Des			
Approximate tubesic (ft3)	69.350		58.08 37.34 0.00 4.58 177.12			
She	II Construction Information		Total fouling resistan(ft2-hr-F/Btu) 0.0000			

Improved Heat Transfer Performance

Measured Trial – Heat Transfer Evaluation

The example below indicates a 20% [0.79 to 0.95] improvement in Q-actual/Q-clean between the two methods.

	M	easured Trial Rur	1			Date	Duty Actual	Duty Clean	Qact/Qclean (L)	Fouling (R)
.00				0.0120			MBtu/hr	MBtu/hr		ft2-hr-F/Btu
90			· ·			1/1/2020	92.0	125.0	0.74	0.0050
		/	2	0.0100		01/15/20	86.0	120.6	0.71	0.0066
.80	-			0.0100		02/01/20	98.0	152.4	0.64	0.0083
.70	• •	a de		0.0090		02/21/20	85.0	136.1	0.62	0.0105
60	• •	-		0.0030	Hydroblast	03/09/20	117.0	148.0	0.79	0.0035
	•	1				03/20/20	87.0	111.8	0.78	0.0049
.50				0.0060		04/05/20	84.0	111.2	0.76	0.0055
.40	y			_		04/17/20	105.2	145.2	0.72	0.0067
.30				0.0040		05/01/20	83.0	118.7	0.70	0.0079
20			1			05/29/20	93.0	145.4	0.64	0.0091
.20	C		20	0.0020		06/11/20	89.5	145.8	0.61	0.0106
.10						06/25/20	87.4	147.0	0.59	0.0111
.00			6	0.0000	Ultrasonic	07/24/20	133.0	140.0	0.95	0.0012
12/1/2019 1/20/2020 3/10/2020 4/29/2020 6/18/2020 8/7/2020 9/26/2020 • Qact/Qclean (L) • Fouling (R) ft2-hr-F/Btu				08/01/20	125.0	135.0	0.93	0.0015		
					08/05/20	118.0	130.0	0.91	0.0020	
				08/11/20	120.0	135.0	0.89	0.0022		
						08/21/20	115.0	135.0	0.85	0.0027

Duty Improvement from better cleaning = 20 MBtu/hr

Cleaner/Faster Example Calculation

	Traditional	
Shorter Oil Out to Oil In	Hydroblast	Ultrasonic Clean As New
	Days	Days
HX Process Prep Isolation	1	1
HX Disassembly and Pulling	1	1
Transport HX Washpad	0.125	0.375
Shelside Clean	2	0.5
Tubeside Clean	1	1
HX Inspection/Repair	1	1
Transport HX to Unit	0.125	0.375
HX Assembly , Leak test and Onstream	1	1
Total Oil Out Oil In	7.25	6.25
Oil Out to Oil In Reduction		1
Oil out Oil in ma	rgin credit \$k	15
Oil out Oil in ene	ergy credit \$k	3.24
Total Oil out O	il In credit \$k	\$18.2
	Traditional	
	On-Site	
Improved Duty from Better Quality Cleaning	Hydroblast	Ultrasonic Clean As New
HX Duty Day 1 After Cleaning MBtu/hr	25	30
HX Duty Day 365 After Cleaning MBtu/hr	15	18
Sinple Median HX Duty	20	24
Yearly Ener	\$105.1	
Yearly Mar	\$100.0	
Yearly Margin + Ener	\$205.1	

Cleaning Effectiveness Enables Acceptance of Compact HX

Having the ability to effectively clean compact exchanger technology in heavily fouling services enables its broader application

Welded Plate

Summary Advantages of Using Ultrasound

- Provides cleaning action on surfaces not accessible by a direct water jet
- Allows cleaning multiple surfaces simultaneously
- Reduction of hydroblast duration
- Less water required

- Enables the use of compact HX designs in fouling services – less capital
- Higher Heat Transfer Lower Emissions

cleanasnew.com +1 (832) 271-2666