

Facilities Management Systems – Why you need this?

Facilities – Inspection and Testing

I Inspectioneering Sponsored by:

• Oil boom in early 1900's made owner/operators build plants, pipelines, facilities and this has made them continuously improve to meet Updates on the Regulatory, Codes, Health, Safety and Environments in Natural **Resource Rich Areas such as** Prairies in Canada.

FAMS Projects on Legacy Assets Improvements

- FAMS Facility Asset Management System
 - A plan to meet the minimum standards required to show due diligence.
 - Ensures that a professional engineer has certified our Facilities.
- Meeting Code requirements.
- Provides the required information to proceed with future plant improvements

North American Practices on Improvements to legacy/ existing Plants, Facilities.

FAMS Project

Plant/Station Results

- Project needs to be started at Any of the Existing Plant Sites, where we attention needed.
- Design review, HAZOP and Action items are complete.

AMERICE & EXPO

Pressure Equipment Issues

- New Pressure relief valves.
- PRV pressure and capacities changed.
- Vessels were rerated for temperature.

AMERICOS

Car Seal Issues

- Car seal additions:
 - Blow down isolation valves.
 - ESD bypasses.
- Car seal procedures and training was improved.
- Improved Car seal documentat

Shutdown Key Improvements

- Shutdown Key Documented
- Protection Standardization.
- Block and hold concept:
 - Reduces vented gas
 - Faster restart
- Plant still blows down on:
 - ESD
 - Fire Detection
 - 40% LEL

- Multi Million dollar project for the Oil and Gas Operators
- Partial funding by the Canadian government
- •Reducing fuel and vented gas in our compressor stations
- •Utilizes Air Fuel Ratio Control and Slipstream
- Project Plan
- 25 units upgraded to AFR/slipstream
- 15 slipstream systems added to current AFR

units.

- 7 AFR+SS and 5 SS to be installed.
- Currently have 28 operating AFR units.

conference & expo Americ9s

- Integrated engine and compressor cont
- Air and fuel management
 - Compensates for ambient conditions
 and changes in fuel
- Reduces fuel consumption (~ 6%)
- Reduces NOX emissions
- Can use vented gas as Fuel

(Slipstream)

• Feeds vented gas into the combustion air.

•AFR reduces main fuel by the amount of added vent fuel.

Slipstreams

- Various sources can be captured.
 - Compressor packing
 - Instrument gas vents
 - Dehydrator flash gas
 - Utilizing station and unit outages to install equipment.

SlipStream

- Control system shows current and totalized flow.
- Currently saving \$\$ per month in fuel + credits.
- Plan to collect dehy flash gas as well.~\$\$ per month

Undiluted Pressure	0.100	Psi	Instant Total Supp Fu	
Undiluted Valve AO	55.5	%	Instant Total Supp Fue	
Status	Onli	ine	Instant Main Fuel Flov	
Air Manifold LEL	3.6	%	Instant Main Fuel Flow	
Cumulative GHG (Since Reset)	4309.	5	Instant Undiluted Fuel	
Cumulative GHG (Since Reset)	287.0	ton Co2	Instant Undiluted Fuel	
Cumulative GHG (Since Reset)	57.0	cars/yr	Total Cumulative Mas	
Cumulative Fuel (Since Reset)	3506.0	5	Total Cumulative Mas	
GHG tonCO2(e) saving Per Month	78	ton/mon	Cumulative Undiluted	
GHG tonCO2(e) saving Per Year	953	ton/yr	Cumulative Undiluted	
GHG tonCO2(e) Cumulative	287.0	ton	Cumulative Ttl Supp I	
Undiluted Vented GHG tonCO2(e) Reduced	953.0	ton/yr	Cumulative Ttl Supp I	
Fuel Savings Per Month	956	\$/month	Green House Gas (Fuel saving c	
Fuel Savings Per Year	11638	\$/yr		
Fuel Saved Cumulative	0.0	kg		

Instant Total Supp Fuel Flow	175.8	kg/hr
Instant Total Supp Fuel Flow	6.0	E3M3/dy
Instant Main Fuel Flow	169.7	kg/hr
Instant Main Fuel Flow	5.8	E3M3/dy
Instant Undiluted Fuel Flow	4.8	kg/hr
Instant Undiluted Fuel Flow	0.1	E3M3/dy
Total Cumulative Mass Flow	0.0	kg
Total Cumulative Mass Flow	18.7	E3M3
Cumulative Undiluted Fuel Mass (Since Rst)	0.0	kg
Cumulative Undiluted Fuel Vol. (Since Rst)	18.7	E3NB
Cumulative Ttl Supp Fuel Mass (Since Rst)	0.0	kg
Cumulative Ttl Supp Fuel Vol. (Since Rst)	18.7	E3M3
Green House Gas (GHG) calculations bas	no he	\$15.ton

Green House Gas (GHG) calculations based on \$15/ton Fuel saving calculations based on \$5/gig HEAT EXCHANGER WORLD FERENCE & EXPO AMERICIOS

- Risk = Probability of Failure x
 Consequences of Failure (Risk = POF X COF)
- Lower Risk = Less Inspections
- Higher Risk = More Inspections(high frequency)

Current operation Plant Procedure Improvements

- Documented safety system bypass procedure.
- Improved Lock out tag out systems.
- Various improved operating procedures.
- Shut Down Keys.
- Plot Plan.
- Slip Stream/Energy Efficiency.
- Regulatory and current code compliance.
- BMS requirement/s
- De-bottlenecking project/upgrade.

Why we need Facility Management Systems?

Compliance with following:

- Labour Code
- Occupational Health and Safety Regulation
- American Petroleum Institute Codes and Practices
- ASME Boiler and Pressure Vessel Codes.
- ASME Code for Pressure Piping(B31.3)
- Pressure Equipment Safety Regulations(ABSA in Alberta, Canada)
- Canadian Standards Association Standards(e.g. Electrical code and Piping code)
- Manufacturers Standardization Society-Standard Practices
- CSA B149.3 Code for field approval of fuel related components on appliances and equipment

Questions? Gobind Khiani 403-850-6982

HEAT EXCHANGER WORLD

AMERICAS