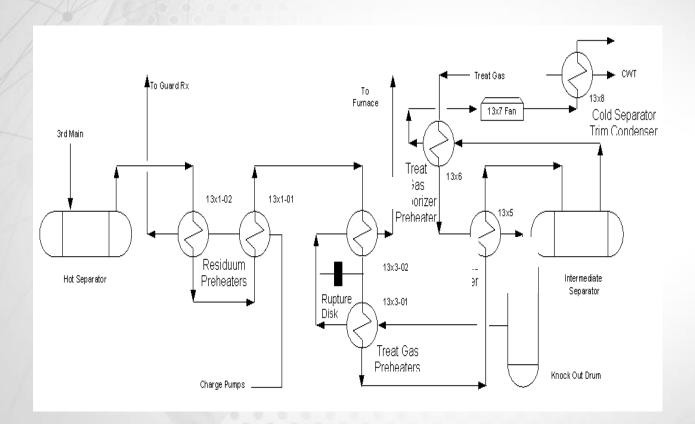


Exchanger Diaphragm Retrofit Welding and Inspection Challenges

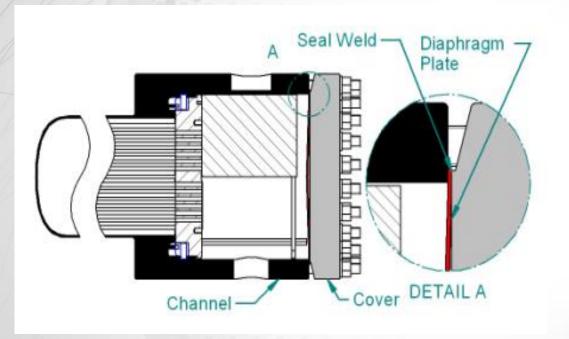
James R. "Chezo" Cesarini, PE | Managing Partner | Pro-Surve Technical Services



Bio Slide

- James Cesarini aka "Chezo"
- Managing Partner
- Pro-Surve Technical Services, LLC. / ProSource Radiography Services, LLC. / ProForce Industrial, LLC
- 38 years in Engineering, Reliability, Inspection, Testing, Process Safety Management
- Field of Expertise: Pressure Vessel Design, Innovative Maintenance Solutions, Closed Loop Workflow, PSM Mechanical Integrity Practices
- Industry Involvement/Recognition: Steadfast Volunteer for API, ASNT, and ASME, Registered Professional Engineer, Industry Achiever, 2009

Locations & Concentrations



Typical Processes

- Hydrotreaters
 - Gas Oil
 - Diesel
 - Gasoline
- Heavy Oil Crackers
- Residfiners
- Other
 - High Pressure
 - Hydrogen induced

Criticality

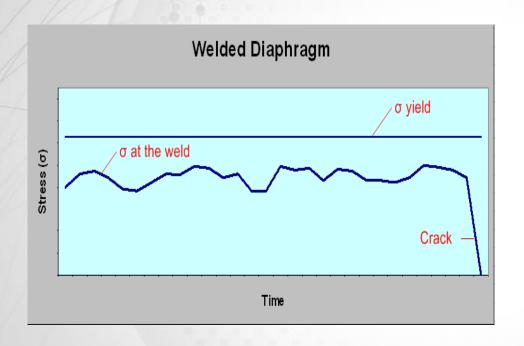
- Hydrogen service
- Heavy Walled Exchanger
- No Gasket Utilized
- Thin Welded Diaphragm Plate
- Small, Thin Seal Weld
- Chrome Material
- Stainless Corrosion Liner
- Several Exchangers in Series
- No Block Valves In Between Equipment

Historical Bad Actors

Cracking of the Diaphragm Seal Weld

- Recognizable
- Annoying
- Costly
- Repeating more than once to get classified as "bad"
- Insanity Rule just won't seem to go away

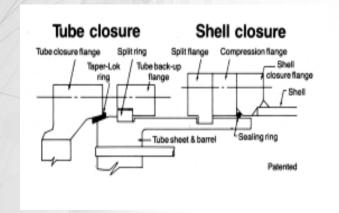
Paddle


No Paddle

Up Creek

Down Creek

Why Cracks Occur



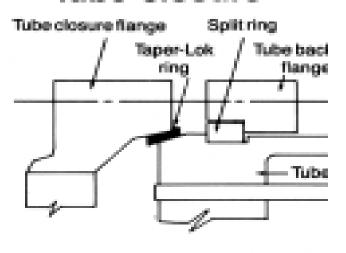
- Tensile overload thermal expansion of low alloy channel (carbon or Cr-Mo) and the SS diaphragm.
- Chloride Stress Corrosion Cracking (SCC) – Salt dropouts in effluent exchangers is ammonium chloride.
- High residual stress
- Crevice between the diaphragm and channel contain concentrated Chlorides
- Polythionic Acid Stress Corrosion Cracking –formed during shutdowns

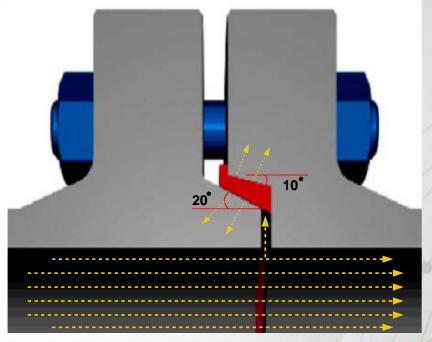
Similar Situation & Service

Industrial Applications

Brown Fin-tube
Hairpin Heat Exchanger

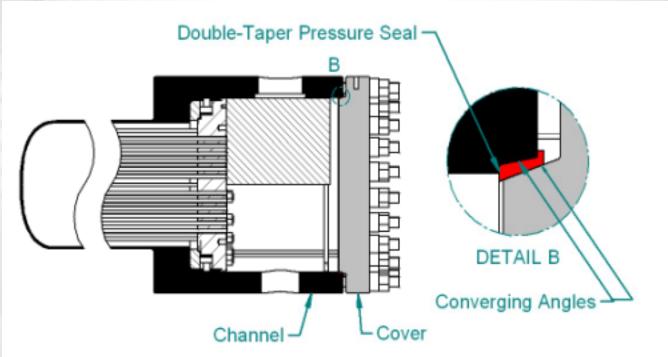
Pressures up to 40,000 psig


Temperatures: -350F - 160 °F



Proven Existing Technology

Same Service – Different Application


Tube closure

Novel Solution Less Time – Less Inspection & Testing

Inspection & Testing Comparison

Time Line Comparison						
Conventional Method	Delta	Using Seal Ring Design				
(List of Job Steps)		(Exceptions Shown - Post Modification)				
Unit S/D, de-pressure, N2 cool						
LOTO, Blinding, etc.						
Remove channel cover – 2 cranes, impacts		1 crane, torque wrenches				
Drill hole in diaphragm, Sniff for LEL	8	No Diaphragm				
Arc gouge out center of diaphragm	(6	No Diaphragm				
Machine off outer diaphragm and fillet weld	10	No Diaphragm				
Disassemble baffle cage (2 Pass)						
Remove tube sheet bolting	3					
Remove tube bundle						
Clean \ Inspect \ Repair per Inspection						
Replace tube bundle & bolting (washers)						
Reassemble baffle cage						
Test channel edge for weld contamination	2/	No Diaphragm, Seal Ring Like Material				
Add nickel overlay "butter coat"	/ 6	No Diaphragm, Seal Ring Like Material				
Machine nickel overlay butter coat	6	No Diaphragm, Seal Ring Like Material				
NDT - chemical test – copper sulfate	2	No Diaphragm, Seal Ring Like Material				
Weld on diaphragm	6	No Diaphragm, Seal Ring Like Material				
NDT - Test fillet weld (PT)	1	No Diaphragm, Seal Ring Like Material				
N2 Test channel (small psig)	6	No Diaphragm, Seal Ring Like Material				
Add cover plate						
Torque nuts with impacts or tensioners	8 🤇	1 crane, torque wrenches				
Perform final testing per Inspection						
LOTO, Blinding, etc. – return unit to Operations						
	72	3 days – 6 Maintenance Shifts				

Maintenance Activity

Large Diameter Flanges: Technical Evaluation

	Large Diameter Flanges: Technical Evaluation					
		ANSI Flange	Rank	Taper Lok	Rank	
1	Flange Material (1)	ASTM A350 LF 6	A	ASTM A350 LF 6	A	
2	Gasket Material	RTJ gasket will be made from softer material than the flange material.	С	Gasket material is same as the flange material.	A	
3	Bolt Material	ASTM A193 Gr-B7	A	ASTM A193 Gr-B7	A	
4	Corrosion (2)		С	Lesser exposure to corrosion (2)	A	
5	Bolt Tension	Requires higher bolt tension to keep the RTJ gasket in contact with the gasket grove.	В	Smaller bolt tension because the pressure energized seal and less likelihood of separation due to the tapered seal surfaces.	A	
6	Bolt Diameter	Code specified bolt & bolt circle diameter.	В	Size optimized to fit pressure end load of flange and bending loads.	A	
7 a	Make up gap	About 3/4" for 48" flange.	A	About 1 1/4" for 48" flange.	В	
7ъ	Misalignment	Zero misalignment capability.	В	Some misalignment capability because of the tapered gasket design.	A	
8	Bending Moment Capacity	Smaller bending moment capacity because inability to misalign w/o breach of seal.	В	Higher bending moment capacity because of ability to misalign slightly and maintain full contact of seal surface around gasket diameter.	A	
9	Bolt relaxation	Possible because the gasket is plastically deformed during make-up.	В	Less likelihood of relaxation because the gasket loads remain below 90% of yield.	A	
10	Design Flexibility	No flexibility because the dimensions are specified by the code.	В	Flexible design, dimensions can be changed to match the requirements.	A	
11	Flange Weight	Flange size is fixed by B16.47 or SP-44.	В	Smaller and lighter than ANSI flange.	A	
12	Availability of misalignment flanges	Misalignment Flanges up to 10 degrees are available.	A	Taper Lok make flanges with max. 10 deg misalignment.	A	
13	Susceptibility to damage	Mating flange may hit the projected half of the RTJ gasket.	В	Male flange has a projection that may hit the female flange.	С	
14	Leak Test	Requires pipeline to be pressured.	В	Seal can be tested without pipeline pressure.	A	
15	Pressure energized seal	No	В	Pressure acting against seal drives seal tighter into converging tapered seal surfaces.	A	
16	Made up gap	Need to check for uniform made up gap.	В	Need to check for uniform made up gap.	В	
17	Effect of Check Valve Clapper Impact Loads.	Bearing stress may exceed allowable.	В	Bearing stress is within allowable.	A	
	TOTALS	4 A's, 12 B's, and 2 C's		15 A's, 2 B's, and 1 C		

Third Party Consultant Evaluation of Retrofit

- Elimination of Mtce
- Elimination of Inspection
- Elimination of Failure
- Elimination of Failure Mechanism
- Material of Seal
- Increased Safety
- Increased Reliability
- Ease of Entry & Close

Questions?

Design, Insp & Testing

Cesarini, James R. "Chezo" Pro-Surve Technical Services

Bus: (281) 922-0200 Mobile: (409) 682-1956

james.cesarini@pro-surve.com

Pressure Seal and Retrofits

Wallace, David AFGlobal

Bus: (713) 293-1270 Mobile: (832) 207-1415 dwallace@afglobalcorp.com Fabrication & Installation

Hughes, Doug Ohmstede Field Services

Bus: (281) 867-3250 Mobile: (281) 202-7547 dhughes@ohmstede.net

