

AMERIC

CORROSION RESISTANT MATERIALS AND FABRICATION

Dennis Lamberth & Chuck Young – Tricor Metals

I Inspectioneering Sponsored by:

Corrosion Resistant Alloys

Stainless Steel – 304, 304L, 316, 316L
Super Austenitic SS – 904L, Alloy 20, AL6XN, 254SMO
Duplex Stainless Steel - 2205, 2507, 2101
Nickel Alloys – Nickel 200, Monel 400, 625, C276, C2000, 825, B3, Alloy 59
Titanium – Grade 2/2H, 7/7H, 9, 11, 12, 16/16H
Zirconium / Tantalum / Niobium

Stainless Steel & Duplex SS

300" series Stainless Steel

- Iron Chromium Nickel alloys
- Intergranular Corrosion (welding & temperature related)
 - Use "L" grade to minimize (lower Carbon)
- Stress Corrosion Cracking possibility
- Used in nitric acid, phosphoric acid(@RT up to 85%), Sulfuric Acid (RT @80%), acetic acid, amines, urea and sulfurous acid

Duplex Stainless Steel

- PREN # Improved pitting and crevice-corrosion resistance in Cl⁻
- Yield Strength about 2X SS
- Higher Stress Corrosion Cracking (SCC) resistance than SS
- At 100F use only under 15% Sulfuric or 3% HCI Acids
- Cautions on Welding heat input, interpass temperature

28 Ni Nickel 58.6934

28

16

2

Nickel Alloys

- Range of Corrosion Resistance
- Wide variety of Alloys
- Alloys designed for specific corrosives
 - Acidic solutions Alkali services
 - Chlorine, Marine,
 - Fertilizer manufacturing
 - variety of Chemical Processing

Titanium Alloys

- Alloys for higher corrosion resistance Pitting and crevice corrosion - Ti 12, Ti 7, Ti16
- Major CPI Applications
 - Chlorine (WET) & Bromine (WET) & Bleach & Seawater
 - Terepthalic Acid
 - Oxidizing Acids nitric, chromic, perchloric
 - Low concentrations of Hydrochloric and Sulfuric Acids
 - Alkaline (ammonium hydroxide, sodium hydroxide, etc)
 - Organic Chemicals & Acids (adipic acid, benzene, acidic acid, formic acid)

Zirconium

Zirconium is immune to SCC (Stress Corrosion Cracking) and has very good corrosion resistance in:

- Dry chlorine gas, bromine and iodine gas
- Hydrochloric acid all concentrations up to boiling
- Nitric acid all concentrations up to boiling
- Sulfuric acid up to 70% concentration at boiling
- Phosphoric acid up to 60% concentration at boiling
- Urea production
- Most organic acids (e.g. acetic, formic), all concentrations up to boiling temperature

Alloy Cost Comparison Chart

Titanium: Affordable and Available

Metal	Density (Lbs/In ³)	Yield Strength (PSI)	Price/LB		Price/LB		Price/Sq Ft	Price/Sq Ft Normalized
2205	0.29	65,000	\$ 3	.04	\$32	\$20		
316L	0.29	25,000	\$ 2	.80	\$29	\$47		
Ti 12	0.163	50,000	\$ 15	.07	\$88	\$71		
Ti 2	0.163	40,000	\$ 13	.34	\$78	\$78		
625	0.305	55,000	\$ 14	.93	\$164	\$119		
C276	0.32	41,000	\$ 13	.47	\$155	\$151		
CuNi 90-10	0.323	15,000	\$ 7	.84	\$91	\$243		
Ti 16	0.163	40,000	\$ 60	.09	\$353	\$353		
Zr	0.234	30,000	\$ 41	.73	\$352	\$469		
Ti 7	0.163	40,000	\$ 91	.25	\$535	\$535		

Project Overview

- From Project Concept to Final Quality Product
 - Design Conditions
 - Mechanical Design
 - Thermal Design
 - Forming
 - Welding
 - Quality assurance / testing

Fricor Metals

Design Conditions

- Accurately determine design conditions
 - Operating temperature & pressure upset conditions too
 - Exact PPM of all components of process stream
 - Solids content
 - Other unique concerns (possible deposits)
 - Phase changes / composition changes
 - Process & service flow rates
 - Allowable pressure drops
- Determine proper metallurgy
- Do not "overdesign" in terms of pressure and temperature Be realistic.

Other Considerations

Physical design decisions

- Space limitations / piping hookups in place
- Materials of Construction (Possible Coupon Testing)
- Maintain corrosive process to tubeside for cost reduction
- Maintenance & cleaning considerations
- U-tube / kettle / reboiler design TEMA designs
- Single or double fixed (& welded) tubesheets
- Maintain corrosive process to tubeside for cost reduction

Thermal Design

- Performed by a heat transfer expert
- Data sheet filled out by plant engineer
- Materials of construction

Mechanical Design

Using ASME guidelines for chosen materials of construction

- Design allowable stress at operating temperature
- Maximum operating temperatures
- Possible upset conditions
- This allows the designer to calculate material thickness
 - Tubes
 - Shell
 - Tubesheets

Specification Data Sheet

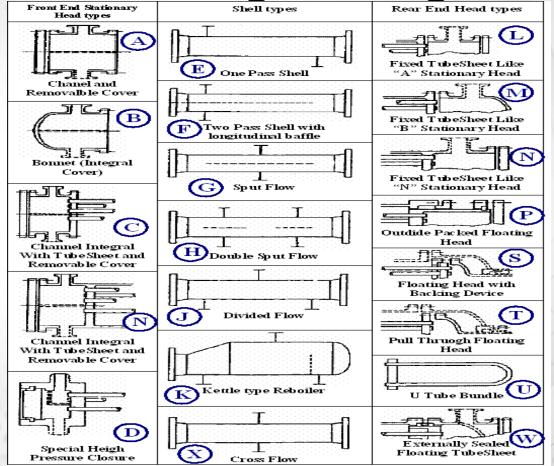
1 Client	COMPANY NAME			Locatio	n	CITY	or PLAN	п			Page	1	of	1	
2 Process Unit	Line 1			Item No. HE-4356273-A			Doc	ument No							
3 Job No.				Fabrica	ntor		TRI	COR MET	AL	S					
4 Service of Unit	Cooling of proc	ess waste	e water									No.	of U	Inits 1	1
5 Size		TEMA	Type (Hor/-	Vert)			Connec	ted in			Parallel			Serie	s
6 Surface/Unit (Eff.)		ft²	Shells/U	nit			Surface	/Shell (Ef	í.)					f	ť²
7 PERFORMANCE OF ONE	JNIT (Optional)														
8 Fluid Allocation				(Inlet)	SF	IELL	SIDE	(Outlet)	(Ir	nlet)	TUBE	SIDE	E	(Outle	t)
9 Fluid Name					COOLING FLUID				PROCESS FLUID						
10 Fluid Quantity, Total			lb/hr			100	000				140	000			
11 Vapor (MW)			lb/hr												
12 Liquid			lb/hr												
13 Steam			lb/hr												
14 Water			lb/hr												
15 Noncondensal	ble (MW)		lb/hr												
16 Temperature			°F		75		8	5.0		120	<mark>).0</mark>		10	<mark>8.0</mark>	
17 Density (Vapor/Liquid)			lb/ft ³												
18 Viscosity (Vapor/Liquic	i)		сP												
19 Specific Heat (Vapor/L	iquid)		Btu/lb °F											- 28	
20 Thermal Conductivity (\	/apor/Liquid)		Btu/hr ft °F												
21 Latent Heat		E	∃tu/lb @ °F			0	D				(D			
22 Inlet Pressure			psia/psig			50 p	osig				75 J	osig			
23 Velocity			ft/s												
24 Pressure Drop (Allowal	ble/Calculated)		psi		5.					5.					
²⁵ Fouling Resistance			hr ft² °F/Btu	0.0	0010					0.00	015				
26 Avg. Film Coefficient			Btu/hr ft² °F												
27 Heat Exchanged					Bt	u/hr	MTD (C	orrected)	(We	eighte	ed)			٥	F
28 Transfer Rate (Require	d/Fouled/Clean)												Btu	/hr ft² °l	F
$^{29} \rho V^2 - lb/ft - s^2$: Inlet Noz				Bundle	Entra	nce		Bu	ndle	e Exit					

Specification Data Sheet

30 CONSTRUCTION PER SHE	LL								
31 Tube No.		OD	in	NOZZLES - No. Size & Rating (Optional)					
32 Thickness		in/BWG	G (Min./Avg.)		SHELL S	IDE	TUBE SIDE		
33 Pitch	in	4 $\cancel{2}$		Inlet	6"		4"		
34 Length 200	in	Туре		Outlet	6"		4"		
35 Tube-Tubesheet Joint				Intermedi					
36 Shell Diameter (ID/OD)			in	Vent	3/4"		3/4"		
37 Cross Baffle Type				Drain	3/4"		3/4"		
38 Spacing: c/c	in	No. of Cro	osspasses						
39 % Cut (Dia./Area)									
40 Tube Support			Design Press		sig 150		150		
41 Long Baffle Seal Type			Design Temp(I	,		0	400 / 0		
42 By-Pass Seal Type			No. of Passe						
43 Impingement Protection			Corrosion All	owance	in 1/16'	',,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	None		
44 MATERIALS OF CONSTRU									
45 Tubes	<u> </u>		ess wetted areas		Gaskets				
46 Shell 47 Shell Cover		3161	L Stainless Steel		Shell Side Tube Side				
47 Shell Cover 48 Channel or Bonnet					Floating Head				
49 Channel Cover					Spare Sets Reg	4			
50 Floating Head Cover/B	olts				Test Ring Req'd (Y/N				
51 Tubesheets					Insulation: Shell				
52 Baffles & Support Plate	S				Channel Inlet/Exi	it			
53 Expansion Joint Type		Non	е	Expa	ansion Joint Materia	sion Joint Material			
54 Code Requirements	ASME Se	ect. VIII			Calc. MAW	P (Y/N) Y	TEMA Class B		
55 REMARKS: 1) Proces	ss water co	ontains up to 5	% dissolved NaCl						
56									
57									
58									
59 Originator/Check:	100		Approved:	Issue Date:			Issue No. A		

Shell & Tube Heat Exchangers

- Extremely flexible and robust
- Wide design capability
- Shell and Tube sides can be different materials
- Some designs can be dismantled for ease of cleaning
- May not be economical for very small applications where custom engineering is required


TEMA Types

- TEMA designations use a three letter code
 - Inlet bonnet
 - Shell type
 - Outlet bonnet
 - Example: BEM

TEMA Exchanger Designations

XCHANGER

AMERICAS

CONFERENCE & EXPO

Titanium U-tube Bundle

Zirconium BKU Heat Exchanger

HADGE

AMERICAS

Plate & Frame Exchangers

- High heat transfer surface area
- Compact and lower cost than shell and tube
- Flexible (easy to add or subtract plates)
- Temperature & Pressure Limited
- Does not work well with solids

Rules of Procurement

- Know what you are buying
- Know your Fabricator
- Don't over design
- Define Quality Requirements
- Define Delivery Requirements
- Lowest price isn't always lowest cost

Tricor Experience

- Over 28 years in operation
- Management with over 45 years in specialty metals business
- Many welders with over 10 years' experience
- Tricor welder school training Welding Engineer on staff
- Metallurgist and 2 PE's on staff

Engineering, Quality Control and Sales with over 35 years' individual experience

THANK YOU FOR LISTENING

Tricor Metals

Cost Effective Corrosion Solutions Through Design & Engineering

> Dennis Lamberth dennis@tricormetals.com 936-273-2661 x 2402

Chuck Young chuck@tricormetals.com 330-264-3299 x 2500

www.tricormetals.com Tricor Meta

